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On the Myopic Policy for a Class of Restless Bandit Problems

with Applications in Dynamic Multichannel Access

Keqin Liu and Qing Zhao

Abstract

We consider a class of restless multi-armed bandit problems that arises in multi-channel opportunis-

tic communications, where channels are modeled as independent and stochastically identical Gilbert-

Elliot channels and channel state observations are subject to errors. We show that the myopic channel

selection policy has a semi-universal structure that obviates the need to know the Markovian transition

probabilities of the channel states. Based on this semi-universal structure, we establish closed-form

lower and upper bounds on the maximum throughput (i.e., average reward) achieved by the myopic

policy. Furthermore, we characterize the approximation factor of the myopic policy by considering a

genie-aided system.

Index Terms

Dynamic multi-channel access, restless multi-armed bandit, myopic policy

I. INTRODUCTION

A. Dynamic Multichannel Access

We consider the following stochastic optimization problem that arises in multichannel op-

portunistic communications. Assume that there areN independent and stochastically identical

Gilbert-Elliot channels [1]. As illustrated in Fig. 1, the state of a channel — “good” or “bad”

— indicates the desirability of accessing this channel and determines the resulting reward.

The transitions between these two states follow a discrete-time Markov chain with transition
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probabilities{pij}i,j∈{0,1}. This channel model has been commonly used to abstract physical

channels with memory. Consider, for example, the emerging application of cognitive radios for

opportunistic spectrum access where secondary users search in the spectrum for idle channels

temporarily unused by primary users [2]. For this application, the good state represents an

idle channel while the bad state an occupied channel. When the primary network employs

load balancing across channels, the occupancy processes of all channels can be considered

stochastically identical.

In each time slot, a user choosesM out of theN channels to sense and subsequently access

channels sensed to be in the good states. Sensing is subject to errors: a good channel may be

sensed as bad andvice versa. Accessing a good channel results in a unit reward, and no access

or accessing a bad channel leads to zero reward. The design objective is the optimal sensing

policy for dynamic channel selection in order to maximize the expected long-term reward.

0 1
(bad) (good)

p01

p11p00

p10

Fig. 1. The Gilber-Elliot channel model.

B. Restless Multi-armed Bandit and Myopic Policy

This problem can be formulated as a partially observable Markov decision process (POMDP)

for generally correlated channels [3], or a restless multi-armed bandit process (RMBP) for inde-

pendent channels considered here. The maximum throughput of the multi-channel opportunistic

system is essentially the long-term expected maximum average reward, or the time-normalized

value function, of an RMBP. Unfortunately, obtaining optimal solutions to a general restless

bandit process is PSPACE-hard [4], and analytical characterization of the performance of the

optimal policy is often intractable.

We thus focus on the low-complexity myopic policy which has been shown to be optimal for

this class of restless bandit problems under certain conditions (see Sec. I-C). Specifically, we
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establish a semi-universal structure of the myopic policy and characterize its performance and

approximation factor as detailed below.

1) Structure of the Myopic Policy: We first show that the myopic policy has a semi-universal

structure under the condition that the probability of false alarm of the channel state detector

is below a certain value. This structure reveals that the myopic policy does not require the

knowledge of the transition probabilities of the Markovian channel model except the order of

p11 andp01.

2) Performance of the Myopic Policy: Based on the semi-universal structure of the myopic

policy, we develop closed-form lower and upper bounds on the steady-state throughput under the

myopic policy that monotonically tighten as the numberN of channels increases. When each

channel is positively correlated (p11 ≥ p01), we further obtain the limiting performance of the

myopic policy asN approaches to infinity.

3) Approximation Factor of the Myopic Policy: By considering a genie-aided system, we

develop an upper bound on the optimal performance, which provides a performance benchmark

for the myopic policy. This result, coupled with the lower bound on the performance of the

myopic policy, leads to an analytical characterization of the approximation factor of the myopic

policy. Specifically, we show that the myopic policy achieves at leastM
N

of the optimal per-

formance when channels are positively correlated, andmax{1
2
, M

N
} of the optimal performance

when channels are negatively correlated (p11 < p01).

C. Related Work

1) Perfect State Observation: Under the assumption of single-channel perfect sensing, the

semi-universal structure of the myopic policy has been established for allN , and the optimality

of the myopic policy proved forN = 2 and conjectured forN > 2 in [5]. Furthermore,

closed-form bounds on the throughput under the myopic policy have been established. A recent

follow-up work [6] has extended the optimality of the myopic policy to allN under the condition

of p11 ≥ p01.

For independent and non-identical channels under multi-channel perfect sensing, Whittle’s

index policy under both discounted and average reward criteria has been established in [7].

An efficiently computable upper bound on the optimal performance has been established based

on Whittle’s relaxation. Numerical results have illustrated the strong performance of Whittle’s
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index policy. For independent and identical channels, Whittle’s index policy has been shown to be

equivalent to the myopic policy. The structure of the myopic policy under multi-channel sensing

has been established, and the myopic policy has been shown to be optimal whenM = N − 1.

Furthermore, an approximation factor of the myopic policy has been developed for generalM

andN . Interestingly, the approximation factor we establish in this paper coincides with the one

obtained in [7].

2) Imperfect State Observation: Under imperfect sensing, the design of multi-channel op-

portunistic access was addressed in [8] under a general correlated channel model. This problem

requires the joint design of the channel state detector, the access policy and the sensing policy. A

separation principle has been established which decouples the design of channel state detector and

access policies from that of channel sensing policy. The channel sensing policy then falls into an

unconstraint POMDP problem. In [9], the structure and optimality of the myopic sensing policy

has been established under certain conditions for independent and identical channels. Specifically

under single-channel sensing, a simple and robust round-robin structure of the myopic policy has

been established when the false alarm probability of the channel state detector is below a certain

value. Based on this structure, the myopic policy has been shown to be optimal forN = 2. In

this paper, we extend the structure of the myopic policy to multi-channel sensing scenarios.

II. PROBLEM FORMULATION

A. System Model

Let S(t)
∆
=[S1(t), . . . , SN(t)] denote the channel states, whereSn(t) ∈ {0 (bad, 1 (good))}

is the state of channeln in slot t. At the beginning of each slot, the user first decides which

M channels to sense for potential access. Once a channel (say channeln) is chosen, the user

detects the channel state, which can be considered as a binary hypothesis test1:

H0 : Sn(t) = 1 (good) vs. H1 : Sn(t) = 0 (bad).

The performance of channel state detection is characterized by the ROC which relates the

probability of false alarmǫ and the probability of miss detectionδ:

ǫ
∆
= Pr{decideH1|H0 is true}, δ

∆
= Pr{decideH0|H1 is true}.

1We consider here the nontrivial cases withp01 andp11 in the open interval of (0,1). When they take the special value of0

or 1, channel state detection can be simplified. Extensions to such special cases are straightforward.
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Based on the imperfect detection outcome in slott, the user chooses an access actionΦn(t) ∈

{0 no access, 1 access} that determines whether to access channeln for transmission. We note

that the design should be subject to a constraint on the probability of accessing a bad channel,

which may cause interference or waste energy. Specifically, the probability of collisionPn(t)

perceived by the primary network in any channel and slot is capped below a predetermined

thresholdζ , i.e.,

Pn(t)
∆
= Pr(Φn(t) = 1|Sn(t) = 0) ≤ ζ, ∀ n, t.

This constrained stochastic optimization problem requires the joint design of the channel state de-

tector (i.e., how to choose the detection thresholds to trade off false alarms with miss detections),

the access policy that decides the transmission probabilities based on imperfect detection out-

comes, and the sensing policy for channel selection. This problem is formulated as a constrained

POMDP in [8] for generally correlated channels. A separation principle has been established

that the optimal detector is the Neyman-Pearson detector with the probabilityδ of miss detection

given by the maximum allowable probabilityζ of collision, and the optimal access policy is to

simply trust the detection outcomes: transmit over a channel if and only if it is detected as good.

Thus, the user can obtain a unit reward on a chosen channel if and only if it is in good state

and detected correctly (i.e., no false alarm). The optimal sensing policy can then be designed

using the optimal detector and the optimal access policy without the constraint on accessing

a bad channel, which becomes an unconstrained POMDP addressed here. The objective is to

maximize the average reward (throughput) over a horizon ofT slots by choosing judiciously a

sensing policy that governs channel selection in each slot.

Since failed transmission may occur, acknowledgements (ACKs) are necessary to ensure

guaranteed delivery. Specifically, when the receiver successfully receives a packet from a channel,

it sends an acknowledgement to the transmitter over the same channel at the end of the slot.

Otherwise, the receiver does nothing,i.e., a NAK is defined as the absence of an ACK, which

occurs when the transmitter did not transmit over this channel or transmitted but the channel is in

bad state. We assume that acknowledgements are received without error since acknowledgements

are always transmitted over good/idle channels.
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B. Restless Multi-Armed Bandit Formulation

Due to limited and imperfect sensing, the system state[S1(t), · · · , SN(t)] ∈ {0, 1}N in slot

t is not fully observable to the user. It can, however, infer the state from its decision and

observation history. It has been shown that a sufficient statistic of the system for optimal

decision making is given by the conditional probability that each channel is in state1 given

all past decisions and observations [10]. Referred to as the belief vector, this sufficient sta-

tistic is denoted byΩ(t)
∆
= [ω1(t), · · · , ωN(t)], whereωi(t) is the conditional probability that

Si(t) = 1. In order to ensure that the user and its intended receiver tune to the same channels in

each slot, channel selections should be based on common observations: the acknowledgements

K(t) ∈ {0 (NAK), 1 (ACK)}M in each slot rather than the detection outcomes at the transmitter.

Let I(t) denote the sensing action that consists ofM channels to sense in slott. Given the sensing

actionI(t) and the observations{Ki(t) ∈ {0, 1} : i ∈ I(t)} in slot t, the belief vector for slot

t + 1 can be obtained via the Bayes rule.

ωi(t + 1) =






p11, i ∈ I(t), Ki(t) = 1

Γ( ǫωi(t)
ǫωi(t)+1−ωi(t)

), i ∈ I(t), Ki(t) = 0

Γ(ωi(t)), i 6= I(t)

(1)

where the operatorΓ(·) is defined as

Γ(x)
∆
=xp11 + (1 − x)p01.

A sensing policyπ specifies a sequence of functionsπ = [π1, π2, · · · , πT ] whereπt maps a

belief vectorΩ(t) to a sensing actionI(t) for slot t. Multi-channel opportunistic access can thus

be formulated as the following stochastic optimization problem.

π∗ = arg max
π

Eπ

[
T∑

t=1

R(πt(Ω(t)))|Ω(1)

]
,

whereR(πt(Ω(t))) is the reward obtained when the belief isΩ(t) and channelsπt(Ω(t)) are

selected, andΩ(1) is the initial belief vector. This problem falls into the model of an RMBP by

treating the belief value of each channel as the state of each arm of a bandit. If no information

on the initial system state is available, each entry ofΩ(1) can be set to the stationary distribution

ωo of the underlying Markov chain:

ωo =
p01

p01 + p10
. (2)
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Let Vt(Ω) be the value function, which represents the maximum expected total reward that

can be obtained starting from slott given the current belief vectorΩ. Given that the user takes

actionI and observesK = {Ki}i∈I , the expected reward that can be accumulated starting from

slot t consists of two parts: the expected immediate rewardΣi∈Iωi(1 − ǫ) and the maximum

expected future rewardVt+1(T (Ω|I,K)), whereT (Ω|I,K) denotes the updated belief vector for

slot t + 1 after incorporating actionI and observationsK as given in (1). Averaging over all

possible observationsK and maximizing over all actionsI, we arrive at the following optimality

equation.

VT (Ω(T )) = max
I

Σi∈Iωi(1 − ǫ),

Vt(Ω(t)) = max
I

(Σi∈Iωi(1 − ǫ) + E[Vt+1 (T (Ω(t)|I,K))].

In theory, the optimal policyπ∗ and its performanceV1(Ω(1)) can be obtained by solving

the above dynamic programming. Unfortunately, due to the impact of the current action on the

future reward and the uncountable space of the belief vector, obtaining the optimal solution using

directly the above recursive equations is computationally prohibitive. Even when approximate

numerical solutions can be obtained, they do not provide insight into system design or analytical

characterizations of the optimal performanceV1(Ω(1)).

III. STRUCTURE AND PERFORMANCE OFTHE MYOPIC POLICY

A. Myopic Policy

A myopic policy ignores the impact of the current action on the future reward, focusing solely

on maximizing the expected immediate rewardE[R(I(t))]. Myopic policies are thus stationary.

The myopic action̂I under belief stateΩ = [ω1, · · · , ωN ] is simply given by

Î(Ω) = arg max
I

Σi∈Iωi. (3)

In general, obtaining the myopic action in each slot requires the recursive update of the belief

vector Ω as given in (1), which requires the knowledge of the transition probabilities{pij}.

Interestingly, it has been shown in [9] under single-channel sensing (M = 1) that the myopic

policy has a simple structure that does not need the update of the belief vector or the precise

knowledge of the transition probabilities if the probability of false alarm is below a certain value.
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Surprisingly, the myopic policy with such a simple and robust structure achieves the optimal

performance forN = 2 [9]. Under multi-channel sensing (M ≥ 1), extensive simulations have

shown that the myopic policy achieves the optimal performance. We thus conjecture that the

optimality of the myopic policy holds for generalM andN . In the next section, we show that

the structure of the myopic policy can be directly generalized to multi-channel sensing scenarios.

Based on this structure, we characterize the performance of the myopic policy.

B. Structure

We first present the following assumptions.

A1: The initial belief values are bounded betweenp01 andp11.

A2:

ǫ ≤
min{p01, p11}(1 − max{p01, p11})

max{p01, p11}(1 − min{p01, p11}
.

Assumption A1 will only be used in Theorem 1 which describes the structure of the myopic

policy. We note that the structure can be directly extended if assumption A1 does not hold. We

assume A1 in Theorem 1 for the easy of presentation.

For Assumption A2, the allowed probability of miss detectionδ plays a major role sinceǫ

can be reduced to an arbitrarily small value at the price of increasedδ. However, bothǫ andδ

can be improved by increasing the sensing/detection time (i.e., taking more measurements). The

caveat is the reduced transmission time for a given slot length. This interesting tradeoff between

the complexity of the detector at the physical layer and the transmission strategy at the Medium

Access Control (MAC) layer of a communication network can be complex and is beyond the

scope of this paper.

The implementation of the myopic policy can be described with a queue structure. Specifically,

all N channels are ordered in a queue, and in each slot, thoseM channels at the head of the

queue are sensed.

Theorem 1: The Semi-Universal structure of the myopic policy

The initial channel orderingQ(1) is determined by the initial belief vector as given below.

ωn1
(1) ≥ · · · ≥ ωnN

(1) =⇒ Q(1) = (n1, · · · , nN).
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Under assumption A1 and A2, channels are reordered at the end of each slot according to the

following simple rules. Whenp11 ≥ p01, the channels observed with ACK will stay at the head

of the queue, and the channels observed with NAK will be moved to the end of the queue while

keeping their order unchanged. Whenp11 < p01, the channels observed with NAK will stay at

the head of the queue while reversing their order, and the channels observed with ACK will be

moved to the end of the queue. The order of the unobserved channels are also reversed.

Proof: Let Q(t) = (n1, n2, · · · , nN) (ni ∈ {1, 2, · · · , N} ∀i) be the queueing order of

channels in slott. We need to show that

ωn1
(t) ≥ · · · ≥ ωnN

(t). (4)

We first present the following properties of the operatorΓ(x) defined in (1).

P1. Γ(x) is an increasing function forp11 ≥ p01 and a decreasing function forp11 < p01.

P2. ∀0 ≤ x ≤ 1, p01 ≤ Γ(x) ≤ p11 for p11 ≥ p01 andp11 ≤ Γ(x) ≤ p01 for p11 < p01.

P3. For p11 ≥ p01 and ǫ ≤ p10p01

p11p00
, we haveΓ( ǫω

ǫω+(1−ω)
) ≤ Γ(ω′) ∀p01 ≤ ω, ω′ ≤ p11; for

p11 < p01 and ǫ ≤ p00p11

p01p10
, we haveΓ( ǫω

ǫω+(1−ω)
) ≥ Γ(ω′) ∀p11 ≤ ω, ω′ ≤ p01.

P1 and P2 follow directly from the definition ofΓ(x). To show P3 forp11 ≥ p01, it suffices to

show ǫω
ǫω+(1−ω)

≤ p01 due to the monotonically increasing property ofΓ(x) and the bound on

ω′. Noticing that ǫω
ǫω+(1−ω)

is an increasing function of bothω and ǫ, we arrive at P3 by using

the upper bounds onω andǫ. Similarly, we can show P3 forp11 < p01.

We now prove (4) by induction. Fort = 1, (4) holds by the definition ofQ(1). Assume

that (4) is true for slott. We show that it is also true for slott + 1.

Consider firstp11 ≥ p01. For an1 ≤ i ≤ M with Kni
= 1, ωni

(t + 1) = p11 which achieves

the upper bound of the belief values (See P2). For an1 ≤ j ≤ M with Knj
= 0, ωnj

(t + 1) is

upper bounded by those of unobserved channels due to P3. Among those channels observed0,

the order of their believes remains unchanged in slott + 1 due to P1. Similarly, the order of the

belief values of the unobserved channels also remains unchanged in slott + 1.

For p11 < p01, the belief values of channels observed1 will achieve the lower boundp11 of

the belief values (See P2). For an1 ≤ j ≤ M with Knj
= 0, ωnj

(t + 1) is lower bounded by

those of unobserved channels due to P3. Among those channels observed0, the order of their

believes will be reversed in slott + 1 due to P1. Similarly, the order of the belief values of the

unobserved channels will also be reversed in slott + 1.
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We thus proved (4) for allt ≥ 1 under the structure of the myopic policy.

Based on this structure, the myopic policy can be implemented without knowing the channel

transition probabilities except the order ofp11 andp01. As a result, the myopic policy is robust

against model mismatch and automatically tracks variations in the channel model provided that

the order ofp11 andp01 remains unchanged. Following thebelief-independence property of this

simple structure, we present the following corollary which allows us to work with a Markov

reward process with a finite state space instead of one with an uncountable state space (i.e., ,

belief vectors) as we encounter in a general POMDP.

Corollary 1: Let Q(t) = (n1, n2, · · · , nN) (ni ∈ {1, 2, · · · , N} ∀i) be the queueing order of

channels in slott, where myopic action̂I(t) = {ni}
M
i=1. Define~S(t)

∆
=[Sn1

(t), Sn2
(t), · · · , SnN

(t)]

and ~E(t)
∆
={e1(t), e2(t), · · · , eM(t)}, where{ei(t)}1≤i≤M, t≥1 are i.i.d. binary random variables

taking value0 with probability ǫ and 1 with probability 1 − ǫ. Under assumption A2, the

augmented Markov process~G(t)
∆
=[~S(t), ~E(t)] form a 2N+M−state Markov chain, and the per-

formance of the myopic policy is determined by the Markov reward process(~G(t), R(t)) with

R(t) = ΣM
i=1Sni

(t)ei(t).

Proof: ~G(t) specifies the states of all channels, the queueing order of channels under the my-

opic policy, and the observations obtained in slott. Specifically, the observation (0 (NAK), 1 (ACK))

on channelni (1 ≤ i ≤ M) in slot t is given bySni
(t)ei(t). Based on the structure of the myopic

policy, ~G(t) determines the probability distribution of~G(t + 1), i.e., ~G(t) is a Markov chain.

Furthermore, the rewardR(t) in slot t is given by the number of channels observed with ACK.

Theorem 1 and Corollary 1 provides foundations in analyzing the performance of the myopic

policy.

C. Performance

In this section, we analyze the performance of the myopic policy. Under the optimality

conjecture (see Sec. III-A), the throughput achieved by the myopic policy defines the performance

limit of a multi-channel opportunistic communications system. In particular, we are interested

in the relationship between the throughput achieved by the myopic policy and the numberN of

channels.
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1) Uniqueness of Steady-State Performance and Its Numerical Evaluation: We first establish

the existence and uniqueness of the system steady-state performance under the myopic policy.

The steady-state throughput under the myopic policy is given by

U(Ω(1))
∆
= lim

T→∞

V̂1:T (Ω(1))

T
, (5)

where V̂1:T (Ω(1)) is the expected total reward obtained inT slots under the myopic policy

when the initial belief isΩ(1). From Corollary 1,U(Ω(1)) is determined by the Markov reward

process{~G(t), R(t)}. It is easy to see that the2N+M -state Markov chain{~G(t)} is irreducible

and aperiodic, thus has a limiting distribution. As a consequence, the limit in (5) exists, and the

steady-state throughputU is independent of the initial belief valueΩ(1).

Corollary 1 also provides a numerical approach to evaluatingU by calculating the limiting

(stationary) distribution of~G(t) whose transition probabilities can be directly obtained from the

transition probabilities of the channel states. This numerical approach, however, does not provide

an analytical characterization of the throughputU in terms of the numberN of channels and

the transition probabilities{pi,j}. In the next section, we obtain analytical expressions ofU and

its scaling behavior with respect toN based on a stochastic dominance argument.

2) Analytical Characterization of Throughput: From the structure of the myopic policy, the

throughput is determined by how often the user switches channels. Whenp11 ≥ p01, the event of

a channel switching is equivalent to a slotwithout reward. The opposite holds whenp11 < p01: a

channel switching corresponds to a slotwith reward. For both cases, we note that the user may

switch to the same channel when a channel switch is needed.

We thus introduce the concept oftransmission period (TP), which is the time period starting

from the slot the user switches to a channel and ending at the slot that the next switch on this

channel is needed (see Fig. 2 for an example under single-channel sensing). Note that the user

may switch to the same channel. We count the transmission periods in the order of its starting

point. Let Lk denote the length of thekth TP. We then have a discrete-time random process

{Lk}
∞
k=1 with a state space of positive integers.

Lemma 1:

U =





M(1 − 1/L̄), p11 ≥ p01

M/L̄, p11 < p01

. (6)

whereL̄ = limK→∞

PK
k=1

Lk

K
denotes the average length of a TP.
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channel switching

Lk = 3 Lk+1 = 6
t

Fig. 2. The transmission period structure.

Proof: Consider firstp11 ≥ p01. Let kT denote the number of channel switches during a

finite horizon of lengthT . Since a channel switch represents a loss of a unit of reward, the

throughputUT during the finite horizon is given below.

UT =
MT − kT

T
. (7)

Let jT denote the number of TPs during the finite horizon. We havejT = M + kT since a

channel switch initializes a new TP. It is easy to see thatMT ≤ ΣM+kT

i=1 Lk ≤ MT + ΣM+kT

k+1 Lk.

Note that the length of a TP is finite almost surely. We thus have

lim
T→∞

MT

kT
= lim

T→∞

ΣM+kT

i=1 Lk

M + kT
= L̄. (a.s.) (8)

From (7) and (8), we have

U = lim
T→∞

UT = M lim
T→∞

(1 −
k

MT
) = M(1 − 1/L̄). (a.s.) (9)

The case forp11 < p01 can be similarly obtained by observing that a channel switch represents

a gain of one unit reward.

Based on Lemma 1, throughput analysis is reduced to analyzing the average TP lengthL̄.

We note that the distribution ofLk is determined by the belief value in the first slot of the

k−th TP. Under single-channel sensing (M = 1), the approach is to construct first-order Markov

chains that stochastically dominate or are dominated by{Lk}
∞
k=1. The stationary distributions of

these first-order Markov chains, which can be obtained in closed-form, lead to lower and upper

bounds onU according to (6). Specifically, forp11 ≥ p01, a lower bound onU is obtained by

constructing a first-order Markov chain whose stationary distribution is stochastically dominated

by the stationary distribution of{Lk}
∞
k=1. An upper bound onU is given by a first-order

Markov chain whose stationary distribution stochastically dominates the stationary distribution

of {Lk}
∞
k=1. Similarly, bounds onU can be obtained forp11 < p01.



TECHNICAL REPORT TR-09-01, UC DAVIS, MARCH, 2009. 13

Theorem 2: Define functions

f(x)
∆
=

ωo − x

1 − x(1 − ǫ)(1 − (p11−p01)(1−p11(1−ǫ))
1−(p11−p01)p11(1−ǫ)

)
,

h(x, y, z, a, b)
∆
=

1 − ωo(1 − ǫ) + a

1 − a( (y(p11−p01)2+(p11−p01)b+1)z
1−((p11−p01)y)2

− x)
,

and for any functionv(·) of vector [x, y, z, a, b],

g ◦ v(x, y, z, a, b)
∆
=

1

( (2−y)z
(1−y)2

− x)v(x, y, z, a, b) + 1
. (10)

Under assumption A2, we have the following lower and upper bounds on the throughputU when

M = 1.

• Case 1: p11 ≥ p01

f(c1)(1 − ǫ)

1 − (p11 − f(c1))(1 − ǫ)
≤ U ≤

ωo(1 − ǫ)

1 − (p11 − ωo)(1 − ǫ)
, (11)

whereωo is given by (2) and

c1 = (ωo − c2)(p11 − p01)
N−1,

c2 =
p01(1 − p01 + ǫp11)

1 − p01 + ǫp01
.

• Case 2: p11 < p01

g ◦ h(x1, y1, z1, a1, 2N − 4) ≤ U ≤ g ◦ h(
1

x1

, 1 − z1, 1 − y1, a1, 3), (12)

where

x1 =
p01

p11(p11 − p01) + p01
,

y1 = 1 − (1 − ǫ)(p11(p11 − p01) + p01),

z1 = (1 − ǫ)p01,

a1 = (1 − ǫ)(ωo − p11)(p11 − p01).

Proof:

• Case 1: p11 ≥ p01
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Let ωk denote the belief value of the chosen channel in the first slot of thek-th TP. The length

Lk(ωk) of this TP has the following distribution.

Pr[Lk(ωk) = l] =





1 − ωk(1 − ǫ), l = 1

ωk(1 − ǫ)k−1pl−2
11 (1 − p11(1 − ǫ)), l > 1

. (13)

It is easy to see that ifω′ ≥ ω, thenLk(ω
′) stochastically dominatesLk(ω).

ω

j

ωo

Γj(ω)

(a) p11 ≥ p01

ω

ωo

j0 1 2 3

Γj(ω)

(b) p11 < p01

Fig. 3. Thej-step belief update when unobserved.

Note that thej-step belief updateΓj(ω) when unobserved is given by (See Fig. 3)

Γj(ω) = ωo − (ωo − ω)(p11 − p01)
j .

Based on the structure of the myopic policy, we haveωk = Γ(Jk+1)( ǫx
ǫx+1−x

), where Jk =
∑N−1

i=1 Lk−i denotes the number of consecutive slots in which the chosen channel has been

unobserved since the last visit, andx denotes the belief value of the chosen channel at the last

time the user left it. From assumption A2,Γ( ǫx
ǫx+1−x

) ≤ Γ(p01) ≤ ωo, whereωo is the stationary

distribution of the Gilbert-Elliot channel given in (2). Based on the monotonic convergence

property of thej-step belief update (see Fig. 3 (a)), we haveωk ≤ ωo. Lk(ωo) thus stochastically

dominatesLk(ωk), and the expectation of the former,Lk(ωo) = 1+ ωo(1−ǫ)
1−p11(1−ǫ)

, leads to the upper

bound ofU given in (11).

Next, we prove the lower bound ofU by constructing a hypothetical system where the initial

belief value of the chosen channel in a TP is a lower bound of that in the real system. The

average TP length in this hypothetical system is thus smaller than that in the real system,

leading to a lower bound onU based on (6). Specifically, sinceωk = Γ(Jk+1)( ǫx
ǫx+1−x

) and

Jk =
∑N−1

i=1 Lk−i ≥ N + Lk−1 − 2, we haveωk ≥ ΓN+Lk−1−1( ǫx
ǫx+1−x

) ≥ ΓN+Lk−1−1( ǫp01

ǫp01+1−p01
)
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based on the monotonic increasing property of thej-step belief update (see Fig. 3 (a)). We thus

construct a hypothetical system given by a first-order Markov chain{L′
k}

∞
k=1 with the following

transition matrixR = {ri,j}.

ri,j =





1 − ΓN+i−1( ǫp01

ǫp01+1−p01
), i ≥ 1, j = 1

ΓN+i−1( ǫp01

ǫp01+1−p01
)(1 − ǫ)j−1(p11)

j−2(1 − p11(1 − ǫ)), i ≥ 1, j ≥ 2
. (14)

Lemma 2: The stationary distribution of the first order Markov chain{L′
k}

∞
k=1 is stochastically

dominated by the stationary distribution of{Lk}
∞
k=1.

Proof:

Let ω′
k denote the expected probability that the chosen channel is in state 1 in the first slot of

thek-th transmission period of{L′
k}

∞
k=1. Assume in thek-th transmission period, the distributions

of L′
k andLk both equal to the same distribution

−→
λ , which may or may not be the stationary

distribution of{Lk}
∞
k=1 . Next we showωk+n ≥ ω′

k+n for any n ≥ 1 by induction.

Whenn = 1, we have

ωk+1 = Σ∞
l=1ELk−N+2,···,Lk−1

[Γ1+Σk
i=k−N+2

Li(
ǫx

ǫx + 1 − x
)|Lk = l]Pr(Lk = l)

≥ Σ∞
l=1ELk−N+2,···,Lk−1

[ΓN−1+Lk(
ǫp01

ǫp01 + 1 − p01
)|Lk = l]Pr(Lk = l)

= Σ∞
l=1Γ

N−1+l(
ǫp01

ǫp01 + 1 − p01

)λl

= ω′
k+1. (15)

Assumeωk+n ≥ ω′
k+n, then

ωk+n+1 = Σ∞
l=1ELk+n−N+2,···,Lk+n−1

[Γ1+Σk+n
i=k+n−N+2

Li(
ǫx

ǫx + 1 − x
)|Lk+n = l]Pr(Lk+n = l)

≥ Σ∞
l=1ELk+n−N+2,···,Lk+n−1

[ΓN−1+Lk+n(
ǫp01

ǫp01 + 1 − p01
)|Lk+n = l]Pr(Lk+n = l)

= Σ∞
l=1Γ

N−1+l(
ǫp01

ǫp01 + 1 − p01
)Pr(Lk+n = l) (16)

Sinceωk+n ≥ ω′
k+n, by (13), we have

Pr(Lk+n = l) ≤ Pr(L′
k+n = l), if l = 1;

Pr(Lk+n = l) ≥ Pr(L′
k+n = l), if l > 1. (17)
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Since the smallest number in the seriesΓN−1+l( ǫp01

ǫp01+1−p01
) is the first one, by (17) and the

fact thatΣ∞
l=1 Pr(Lk+n = l) = Σ∞

l=1 Pr(L′
k+n = l) = 1, we have

Σ∞
l=1Γ

N−1+l(
ǫp01

ǫp01 + 1 − p01
) Pr(Lk+n = l) ≥ Σ∞

l=1Γ
N−1+l(

ǫp01

ǫp01 + 1 − p01
) Pr(L′

k+n = l) = ω′
k+n+1

(18)

Combine (16) and (18), we haveωk+n+1 ≥ ω′
k+n+1.

By the above induction, we haveωk+n ≥ ω′
k+n for any n ≥ 1. So the stationary distribution

of the first order Markov chain{L′
k}

∞
k=1 is dominated by the stationary distribution of{Lk}

∞
k=1.

Let L′ denote the average length of a transmission period ofL′
k. Based on (6) and Lemma 2,

L′ leads to a lower bound onU . Last, we obtain closed-formL′ by solving the stationary

distribution of the first-order Markov chain{L′
k}

∞
k=1.

Recall thatR = {ri,j} is the transition matrix of{Lk}
∞
k=1, whereri,j is given in (14). Let

R(:, k) denote thek-th column ofR. We have

1 − R(:, 1) =
R(:, 2)

1 − p11(1 − ǫ)
, R(:, k) = R(:, 2)(p11(1 − ǫ))k−2, (k ≥ 2) (19)

where1 is the unit column vector[1, 1, ...]t. By the definition of stationary distribution, we have,

for k = 1, 2, · · · ,

[λ1, λ2, · · · ]R(:, k) = λk, (20)

which, combined with (19), leads to

λ1 = 1 −
λ2

(1 − p11(1 − ǫ))
, λk = λ2(p11(1 − ǫ))k−2. (k ≥ 2) (21)

Substituting (21) into (20) fork = 2 and solving forλ2, we haveλ2 = f(c1)(1−ǫ)(1−p11(1−ǫ)),

wheref(c1) is given in (11). From (21), we then have the stationary distribution as

λk =





1 − f(c1)(1 − ǫ), k = 1

f(c1)(1 − ǫ)(p11(1 − ǫ))k−2(1 − p11(1 − ǫ)), k > 1
, (22)

which leads toL̄ =
∑∞

k=1 kλk = 1 + f(c1)(1−ǫ)
1−p11(1−ǫ)

.

• Case 2: p11 < p01
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Let ωk denote the belief value of the chosen channel in the first slot of thek-th TP. Define the

operatorc(·) as c(x) = ǫx
ǫx+1−x

. We have

Pr[Lk(ωk) = l] =





ωk(1 − ǫ), l = 1

(1 − ωk(1 − ǫ))
∏l−2

i=1(1 − (Γ ◦ c)i(ωk)(1 − ǫ))(Γ ◦ c)l−1(ωk)(1 − ǫ), l > 1
.

(23)

Consider first the upper bound. We construct the following hypothetical system where the

stationary distribution of a TP is stochastically dominated by the one in the real system. The

average TP length in this hypothetical system is thus smaller that in the real system, leading

to a upper bound onU based on (6). Specifically, the distribution of a TP in the hypothetical

system has the following form.

Pr[L′
k(ωk) = l] =





Γ(p11)
p01

ωk(1 − ǫ) + 1 − Γ(p11)
p01

, l = 1

(1 − ωk(1 − ǫ))(1 − p01(1 − ǫ))k−2Γ(p11)(1 − ǫ), l > 1
. (24)

We first show thatL′
k(ωk) is stochastically dominated byLk(ωk). Note thatPr[L′

k(ωk) = l] ≥ 0

for all l ∈ Z+ and σ∞
l=1 Pr[L′

k(ωk) = l] = 1. The distribution ofL′
k(ωk) given in (24) is thus

well-defined. SinceΓ(p11) ≤ Γ ◦ c(ω) ≤ p01 for any p11 ≤ ω ≤ p01, we havePr[L′
k(ωk) = l] ≤

Pr[Lk(ωk) = l] for all l ≥ 2. L′
k(ωk) is thus stochastically dominated byLk(ωk).

It is easy to see thatL′
k(ω

′) is stochastically dominated byL′
k(ω) if ω′ ≥ ω. L′

k(ω
′) is thus

stochastically dominated byLk(ω) if ω′ ≥ ω. Based on the structure of the myopic policy, it is

clear that whenLk−1 is odd, in thek-th TP, the user will switch to the channel visited in the

(k−2)-th TP. As a consequence, the initial beliefωk of thek-th TP is given byωk = Γ(Lk−1+1)(1).

When Lk−1 is even, we can show thatωk ≤ Γ(Lk−1+4)(1). This is because that forLk−1 even,

the user cannot switch to a channel visitedLk−1 + 2 slots ago, andΓj(1) decreases withj for

even j’s and Γj(1) ≥ Γi(1) for any evenj and oddi (see Fig. 3 (b)). We thus construct a

hypothetical system given by the first-order Markov chain{L′
k}

∞
k=1 with the following transition

probabilities.

ri,j =





Γ(p11)
p01

Γi+1(1)(1 − ǫ) + 1 − Γ(p11)
p01

, if i is odd,j = 1

(1 − Γi+1(1)(1 − ǫ))(1 − p01(1 − ǫ))j−2Γ(p11)(1 − ǫ), if i is odd,j ≥ 2

Γ(p11)
p01

Γi+4(1)(1 − ǫ) + 1 − Γ(p11)
p01

, if i is even,j = 1

(1 − Γi+4(1)(1 − ǫ))(1 − p01(1 − ǫ))j−2Γ(p11)(1 − ǫ), if i is even,j ≥ 2

.
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Similarly to Lemma 2, it can be shown that the stationary distribution of{L′
k}

∞
k=1 is stochastically

dominated by that of{Lk}
∞
k=1. Furthermore the stationary distribution of{L′

k}
∞
k=1 can be obtained

in closed form by using an approach similar to that in Case 1, leading to the upper bound on

U given in (12).

We now prove the lower bound. Consider the hypothetical system with the distribution of a

TP as given below.

Pr[L′
k(ωk) = l] =





p01

Γ(p11)
ωk(1 − ǫ) + 1 − p01

Γ(p11)
, l = 1

(1 − ωk(1 − ǫ))(1 − Γ(p11)(1 − ǫ))k−2p01(1 − ǫ), l > 1
. (25)

Similarly, L′
k(ωk) is well-defined and stochastically dominatesLk(ωk). It is easy to see that

L′
k(ω

′) stochastically dominatesL′
k(ω) if ω′ ≤ ω. L′

k(ω
′) thus stochastically dominatesLk(ω) if

ω′ ≤ ω.

Based on the structure of the myopic policy,ωk = p
(Lk−1+1)
11 whenLk−1 is odd. WhenLk−1

is even, to find a lower bound onωk, we need to find the smallest oddj such that the last visit

to the channel chosen in thek-th TP isj slots ago. From the structure of the myopic policy, the

smallest feasible oddj is Lk−1+2N−3, which corresponds to the scenario where allN channels

are visited in turn from the(k − N + 1)-th TP to thek-th TP with Lk−N+1 = Lk−N+2 = · · · =

Lk−2 = 2. We thus haveωk ≥ p
(Lk−1+2N−3)
11 . We then construct a hypothetical system given by

the first-order Markov chain{L′
k}

∞
k=1 with the following transition probabilities.

ri,j =






p01

Γ(p11)
Γi+1(1)(1 − ǫ) + 1 − p01

Γ(p11)
, if i is odd,j = 1

(1 − Γi+1(1)(1 − ǫ))(1 − p01(1 − ǫ))j−2Γ(p11)(1 − ǫ), if i is odd,j ≥ 2

Γ(p11)
p01

Γi+2N−3(1)(1 − ǫ) + 1 − Γ(p11)
p01

, if i is even,j = 1

(1 − Γi+2N−3(1)(1 − ǫ))(1 − p01(1 − ǫ))j−2Γ(p11)(1 − ǫ), if i is even,j ≥ 2

.

The stationary distribution of this hypothetical system leads to the lower bound onU given

in (12).

For multi-channel sensing (M > 1), it is difficult to construct first-order Markov process to

stochastically dominate or be dominated by{Lk}
∞
k=1. Instead, we establish a uniform statistical

bound on the distributions of all TPs based on the structure of the myopic policy. The bounds

on the throughput when appliedM = 1 are thus looser than those under single-channel sensing

scenarios as given in Theorem 2.

Theorem 3: Recall the definition ofg ◦ v(·) given in (10). Under assumption A2, we have the

following lower and upper bounds on throughputU whenM > 1.
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• Case 1: p11 ≥ p01

Mc3(1 − ǫ)

1 − (p11 − c3)(1 − ǫ)
≤ U ≤

Mωo(1 − ǫ)

1 − (p11 − ωo)(1 − ǫ)
. (26)

wherec3 = ωo − (ωo −
ǫp01

ǫp01+1−p01
)(p11 − p01)

⌊ N
M

⌋.

• Case 2: p11 < p01

Mg ◦ v1(x1, y1, z1, a1, b1) ≤ U ≤ Mg ◦ v2(
1

x1
, 1 − z1, 1 − y1, a1, b1), (27)

where

v1(·) = 1 − (ωo − (ωo − p11)(p11 − p01)
2⌊ N

M
⌋−2)(1 − ǫ),

v2(·) = 1 − (p11(p11 − p01) + p01)(1 − ǫ),

x1 =
p01

p11(p11 − p01) + p01
,

y1 = 1 − (p11(p11 − p01) + p01)(1 − ǫ),

z1 = (1 − ǫ)p01.

Note thata1 and b1 can be arbitrary since they are arguments of the constant functionsv1 and

v2.

Proof:

• Case 1: p11 ≥ p01

Consider first the upper bound. Similarly to single-channel sensing, the belief valueωk of the

chosen channel in the first slot of thek−th TP is upper bounded byωo. Lk(ωo) thus stochastically

dominatesLk(ωk), and the expectation of the former leads to the upper bound onU given in (26).

We now consider the lower bound. Recall thatωk = Γ(Jk+1)( ǫx
ǫx+1−x

), whereJk denotes the

number of consecutive slots in which the chosen channel has been unobserved since the last visit,

andx denotes the belief value of the chosen channel at the last time the user left it. Based on the

structure of the myopic policy, the channel has the last priority when the user leaves it. It will

take at least⌊N−M
M

⌋ slots before the user returns to the same channel,i.e., Jk ≥ ⌊N
M
⌋−1. Based

on the monotonic increasing property of thej-step transition probabilityT j(ω) (see Fig. 3 (a)),

we haveωk = ΓJk+1( ǫx
ǫx+1−x

) ≥ Γ⌊ N
M

⌋( ǫx
ǫx+1−x

) ≥ Γ⌊ N
M

⌋( ǫp01

ǫp01+1−p01
). ThusLk(Γ

⌊ N
M

⌋( ǫp01

ǫp01+1−p01
))
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is stochastically dominated byLk(ωk), and the expectation of the former leads to the lower

bound onU given in (26).

• Case 2: p11 < p01

Consider first the upper bound. Letωk denote the belief value of the chosen channel in the first

slot of thek−th TP. Based on the structure of the myopic policy, we haveωk = ΓJk+1(1), where

Jk denotes the number of consecutive slots in which the chosen channel has been unobserved

since the last visit. From Fig. 3 (b), we haveωk = ΓJk+1(1) ≤ Γ2(1). Combined with the

hypothetical system given in (24),L′
k(Γ

2(1)) is stochastically dominated byLk(ωk), and the

expectation of the former leads to the upper bound onU given in (27).

We now consider the lower bound. Recall thatωk = ΓJk+1(1). If If Jk is odd, thenΓJk+1(1) ≥

Γ2⌊ N
M

⌋−1(1) since2⌊N
M
⌋ − 1 is an odd number (see Fig. 3 (b)). IfJk is even,i.e., the user has

stayed even slots before it returns this channel, thenJk is at least2⌊N−M
M

⌋. we haveω =

ΓJk+1(1) ≥ Γ2⌊ N
M

⌋−1(1). Combined with the hypothetical system given in (25),L′
k(Γ

2⌊ N
M

⌋−1(1))

stochastically dominatesLk(ωk), and the expectation of the former leads to the lower bound on

U given in (27).

Corollary 2: For p11 > p01, the lower bound on throughputU increasingly converges to the

constant upper bound at geometrical rate(p11 − p01)
1

M asN increases; forp11 < p01, the lower

bound onU increasingly converges to a constant at geometrical rate(p01 − p11)
2

M .

Proof: From the closed-form expressions of the lower bounds onU given in Theorem 2

and Theorem 3, it is easy to see that the lower bound is monotonically increasing withN .

Let x = |p11 − p01|. For p11 > p01, after some simplifications, the lower bound has the form

a + b/(x⌊ N
M

⌋ + c), wherea, b, c (c 6= 0) are constants. The upper bound isa + b/c. We have
|a+b/(x⌊ N

M
⌋+c)−a−b/c|

x
N
M

→ O(b/c2) asN → ∞. Thus the lower bound converges to the upper bound

with geometric ratex
1

M .

For p11 < p01, the lower bound has the formd + e/(x2⌊ N
M

⌋−1 + f), whered, e, f (f 6= 0) are

constants. It converges tod + e/f asN → ∞. We have|d+e/(x2⌊ N
M

⌋−1+f)−d−e/f |

x
2N
M

→ O(e/(xf 2))

asN → ∞. Thus the lower bound converges with geometric ratex
2

M .

The convergence of the lower bound to the upper bound whenp11 ≥ p01 can be explained as

follows. The upper bound given in Theorem 3 corresponds to the case where the belief in the

first slot of a TP is equal to the stationary distributionωo. If a user can always switch to channels
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with probability ωo being in good state when channel switches are needed, the throughput will

achieve the upper bound given in (26). Specifically, we have the following theorem, which gives

the closed-form performance under the myopic policy over a finite horizon.

Theorem 4: For p11 ≥ p01 and N ≥ MT , under assumption A2, the expected total reward

over T slots when the initial belief starts from the stationary distribution is given below.

V̂1:T (Ω(1)) = Mωo(1 − ǫ)(
(T − 1)

1 − (p11 − ωo)(1 − ǫ)
+ c4), (28)

where

c4 = 1 −
((ωo − p11)(1 − ǫ))2(1 − ((p11 − ωo)(1 − ǫ))T−1)

(1 − (p11 − ωo)(1 − ǫ))2
.

Proof: From the structure of the myopic policy, if the user observes state1 from a channel,

it will stay on that channel. Otherwise, it will switch to a new channel (with beliefωo). Clearly,

V does not depend onN since at mostMT channels need to be considered duringT slots.

In the first slot, the user randomly choosesM channels and getsMωo(1− ǫ) units of reward.

Then the user will either stay or switch on a channel. This process is a Markov chain with states

“stay” and “switch” as shown below.

Stay Switch

1 − p11(1 − ǫ)

1 − ωo(1 − ǫ)p11(1 − ǫ)

ωo(1 − ǫ)

Fig. 4. The Markov chain with states “stay” and “switch”.

If the user observes1 on a channel after the fist slot, it will stay and getp11(1 − ǫ) units

of reward on this channel. Otherwise it will switch to a new channel and getωo(1 − ǫ) units

of reward. SoV is determined by the distribution of the states of the above two-state Markov

chain.
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V (ωo, T ) = M(ΣT−1

M=1
[ωo(1 − ǫ) 1 − ωo(1 − ǫ)]


 p11(1 − ǫ) 1 − p11(1 − ǫ)

ωo(1 − ǫ) 1 − ωo(1 − ǫ)




M−1 
 p11(1 − ǫ)

ωo(1 − ǫ)


 + ωo(1 − ǫ))

= M(ΣT−1

M=1
[ωo(1 − ǫ) 1 − ωo(1 − ǫ)]{

1

1 − (p11 − ωo)(1 − ǫ)


 ωo(1 − ǫ) 1 − p11(1 − ǫ)

ωo(1 − ǫ) 1 − p11(1 − ǫ)




= +
((p11 − ωo)(1 − ǫ))M−1

1 − (p11 − ωo)(1 − ǫ)



 1 − p11(1 − ǫ) p11(1 − ǫ) − 1

−ωo(1 − ǫ) ωo(1 − ǫ)



}



 p11(1 − ǫ)

ωo(1 − ǫ)



 + ωo(1 − ǫ))

= M(
ωo(1 − ǫ)(T − 1)

1 − (p11 − ωo)(1 − ǫ)
−

ωo(1 − ǫ)3(ωo − p11)
2(1 − ((p11 − ωo)(1 − ǫ))T−1)

(1 − (p11 − ωo)(1 − ǫ))2
+ ωo(1 − ǫ))

.

(29)

From (29), we immediately see that the throughputU is given as follows.

U = lim
T→∞

V̂1:T (Ω(1))

T
=

Mωo(1 − ǫ)

1 − (p11 − ωo)(1 − ǫ)
, (30)

which agrees with the upper bound given in Theorem 3.

The monotonicity of the difference between the upper and lower bounds with respect toN

illustrates that the performance of the multi-channel opportunistic system improves with the

numberN of channels, as suggested by intuition. Forp11 ≥ p01, the upper bound gives the

limiting performance of the opportunistic system whenN → ∞. By Corollary 2, the throughput

of a multi-channel opportunistic system with single-channel sensing quickly saturates as the

number of channels increases; it is thus crucial to enhance radio sensing capability in order to

fully exploit the communication opportunities offered by a large number of channels.

IV. A PPROXIMATION FACTOR OF THEMYOPIC POLICY

Although the optimality of the myopic policy is proved forN = 2 and conjectured for general

scenarios based on numerical results, establishing the optimality or simple sufficient conditions

for optimality appears to be challenging. Under the discounted reward criterion, we have shown

that so long as the discount factor is less than1/(M + 1), the myopic policy is optimal for

all N . In this section, we take a further step toward the optimality of the myopic policy. By

considering a genie aided system, we establish a bound on the performance loss of the myopic

policy and its approximation factor regarding to the optimal policy.
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A. A Genie-aided System

In the Genie-aided system, we assume the user can sense, access, and obtain observations

(ACK/NAK) from all N channels . However, the user can only get reward fromM channels

determined at the beginning of each slot. Clearly, the myopic policy (i.e., chooseM channels

with largest probabilities of being in state1 to accrue rewards) is optimal since current choice

will not affect the belief transitions. Similar to Corollary 1, the reward process of the genie-aided

system is ergodic under assumption A2. Furthermore, we obtain an upper bound on the optimal

performance of the genie-aided system.

Theorem 5: Definex
∆
=

ǫp2
11

+p01−p01p11

ǫp11+1−p11
. Under assumption A2, the maximum steady-state through-

put Ū in the genie-aided system is upper bounded as given below.

• Case 1: p11 ≥ p01

Ū ≤ (Mp11 − ΣM
k=0


 N

k


 dk)(1 − ǫ), (31)

where
dk = (M − k)(p11 − x)(ωo(1 − ǫ))k(1 − ωo(1 − ǫ))N−k.

• Case 2: p11 < p01

Ū ≤ (Mx − ΣM
k=0


 N

k


 ek)(1 − ǫ), (32)

where
ek = (M − k)(x − p11)(ωo(1 − ǫ))N−k(1 − ωo(1 − ǫ))k.

Proof:

• Case 1: p11 ≥ p01

Based on the ergodicity of the reward process in the genie-aided system, the initial belief vector

does not affect the optimal performance. Without loss of generality, assume the state of each

channel starts from the stationary distributionωo. As a consequence, the numberk of channels

observed as1 falls into the binomial distributionB(k, N, ωo(1 − ǫ)) in every slot. Since the

channels observed as1 will have the largest belief valuep11 and other channels’ belief values

will be upper bounded byΓ( ǫp11

ǫp11+1−p11
) in the next slot, the expected reward obtained under the
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myopic policy will be upper bound by the right-hand side of (31). We thus proved the upper

bound onŪ .

• Case 2: p11 < p01

Similarly, we assume the state of each channel starts from the stationary distributionωo without

loss of generality. The numberk of channels observed as1 falls into the binomial distribution

B(k, N, ωo(1− ǫ)) in every slot. Since the channels observed as1 will have the smallest belief

valuep11 and other channels’ belief values will be upper bounded byΓ( ǫp11

ǫp11+1−p11
) in the next

slot, the expected reward obtained under the myopic policy will be upper bound by right-hand

side of (32). We thus proved the upper bound onŪ .

B. Approximation Factor

Clearly, the optimal performance of the genie-aided system is an upper bound on the maximum

throughput in the original multi-channel opportunistic access system. In other words,Ū provides

a performance benchmark of all sensing policies, including the myopic policy. To better bound

the performance of the myopic policy, we present another lower bound on the throughputU

under the myopic policy.

Theorem 6: Let Ũ be the throughput under random sensing policy that choosesM out of N

channels with uniform probability (i.e., choose any set ofM channels with probability1/
(

N

M

)
),

andU∗ the maximum throughput under the optimal policy. We have

Mωo(1 − ǫ) = Ũ ≤ U ≤ U∗ ≤ Ū ≤ Nωo(1 − ǫ). (33)

Proof: Since channels are stochastically identical, the random sensing policy is equivalent

to the static policy that chooses a constant set ofM channels in each slot. Clearly, the long-run

throughput of the static policy on a chosen channel is given by the stationary distributionωo

multiplied by the probability(1 − ǫ) of no false alarm.

To prove Ũ ≤ U , we note that the expected immediate reward under the random sensing

policy in each slot is given by the expected sum ofM randomly chosen belief values under

any given policy (including the myopic policy). Since the expected immediate reward under the

myopic policy in each slot is given by the expected sum of the firstM largest belief values. The

throughput under the myopic policy is thus lower bounded by that under the random sensing

policy.
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The proof forU ≤ U∗ ≤ Ū is trivial. To proveŪ ≤ Nωo(1 − ǫ), we note thatNωo(1 − ǫ) is

the throughput under the policy that senses and accrues rewards from all of theN channels.

Combining the maximum of the lower bounds onU given in Theorem 2, Theorem 3 and

Theorem 6 and the minimum of the upper bounds onŪ given in Theorem 5 and Theorem 6,

we obtain a uniform bound on the performance loss under the myopic policy. We further obtain

the approximation factor of the myopic policy as given below.

Corollary 3: Let η
∆
= U

U∗ (η ∈ [0, 1]) be the approximation factor of the myopic policy. Under

assumption A2, we have

η ≥





M
N

, if p11 > p01

max{1
2
, M

N
}, if p11 < p01

1, if p11 = p01

. (34)

Proof: From Theorem 6, we directly see thatη ≥ M
N

. Considerp11 < p01. Based on

Theorem 5, we havēU ≤ MΓ( ǫp11

ǫp11+1−p11
) (see the proof of Theorem 5). We thus have

η =
U

U∗
≥

Ũ

Ū
≥

Mωo

MΓ( ǫp11

ǫp11+1−p11
)
≥

1

1 + p01 − p11
≥

1

2
.

For the trivial casep11 = p01, we note that the lower bound onU given in Theorem 3 agrees

with the upper bound on̄U given in Theorem 5.

V. NUMERICAL EXAMPLES

In this section, we demonstrate the tightness of the bounds onU given in Sec. III-C2 and

Sec. IV-A. In particular, we are interested in the lower and upper bounds on the performance

of the myopic policy given in Theorem 2 and Theorem 3, and the upper bound on the optimal

performance in the genie-aided system given in Theorem 5. We also generate the performance

of the myopic policy and the optimal performance in the genie-aided system by Monte Carlo

simulations. Fig. 5 illustrates the bounds on the performance of the myopic policy under single-

channel sensing. Fig. 6 illustrates the bounds on the performance of the myopic policy under

multi-channel sensing (M = 2). We observe that the lower bound on the performance of the

myopic policy quickly converges to the upper bound asN → ∞ when channels are positively

correlated. We also observe from Fig. 5– 6 that the upper bound on the optimal performance in

the genie-aided system is tight.
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Fig. 5. Performance bounds of the myopic policy (M = 1, p11 = 0.8, p01 = 0.2, ǫ = 0.0312).

VI. CONCLUSION AND FUTURE WORK

In this paper, we have analyzed the performance of the myopic sensing policy in multi-channel

opportunistic access under an independent and stochastically identical Gilbert-Elliot channel

model with noisy state observations. Based on the conjectured optimality of the myopic sensing

policy, the obtained analytical results allow us to systematically examine the impact of the number

of channels and channel dynamics (transition probabilities) on the system performance. An

approximation factor of the myopic policy has been established. Future work includes proving the

optimality conjecture of the myopic policy, and generalization to independent and stochastically

non-identical channel model by investigating Whittle’s index policy.
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